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Abstract. In the light of the effective-field theory, the present paper auempu to discuss the 
investigation done into the phase diagnms of a random nearest-neighbour interaction spin-I 
king model with a single-ion anisotropy in an applied transverse field on the honeycomb 
lattice. The interactions are assumed to be independent random variables with distribution 
P(J,) ‘I = p S ( J . .  ‘I - 11) t ( I  - p ) S ( l i j  - Jz),  where J1 > 0 and IhlJll  < 1. We find a 
number of interesting phenomena. such as two different types of re-entrant phenomenon due to 
the competition between Ihe random bond and the negative single-ion anisotropy panmeter. as 
well 3s the usual fNStIIUiO0 of 1.. The influence of a tmsvene  field on the behaviours of the 
tricritiwl point and re-entrant transition is also discussed in this paper. 1”. 

1. Introduction 

In the past few decades there has been an increasing number of studies dealing with the 
phase transition of the spin-1 king model [1-6]. In particular, the spin-I Ising model 
including the term for a single-ion anisotropy is described by the following Hamiltonian: 

i 

where the first summation runs over all pairs of nearest neighbours, and Jij and D are 
the exchange interaction and the singleion anisotropy parameter, respectively. The model 
Hamiltonian, which is often called the Blume-Capel [ I ,  21 model, has been studied in some 
detail using a variety of methods [3-81. It is well known that in the system there exists 
a tricritical point (TCP) in the phase diagram at which the phase transition changes from 
second order to first, when the value of D takes a large negative value. 

On the other hand, some attention has recently been directed to the king model with 
random interactions [9-111. The exchange interactions Jij are assumed to be independent 
random variables with the distribution 

(2) P ( J i j )  = p S ( J i j  - JI) + (1 - p ) S ( J i j  - 4) 

where JI  = J > 0 and 0 < p < 1. We assume that JI > J2 without loss of generality 
and therefore introduce a parameter a = J z / J l .  As far as we know, however. the effects of 
an applied transverse field on the phase diagrams (or phase transitions) of the spin-1 Ising 
model with a crystal-field interaction have not been investigated either experimentally or 
theoretically, except for the work that we have previously done [IZ]. 
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The purpose of this work is to study the effects of a transverse field on phase 
diagrams in a random-mixed-bond spin-1 king model with a negative single-ion anisotropy 
parameter under the effectivefield theory (EFT) introduced by Honmura and Kaneyoshi [ 131. 
Accordingly, the exchange interaction Jtj in (1) is assumed to be given by (2). The critical 
properties including the TCPS and re-entrant phenomena are discussed in detail only for the 
honeycomb lattice. 

2. Formulation 

With a spin-I king model within a transverse field considered, the Hamiltonian of the 
system is given by 

where R is an applied hansvene field, and both Sf and Sf are components of a spin-I 
operator at site i .  D is taken to be positive. The starting point for the statistics of our spin 
system is the relation proposed by Sa Barreto and Fittipaldi [14], within which the thermal 
average of any spin operator Oi at site i is approximately given by 

((0J))r = ((ITrdoi ~ ~ ~ ~ - B ’ H , ~ l l / ~ ~ ~ i ~ ~ ~ ~ p ~ - B ‘ l f ~ ~ l ~ ~ ,  (4) 

where (. . .) indicates the canonical thermal average, (. . .)r denotes the random-bond average 
for (2). Tr(i, means the partial trace in respect of the lattice site i, ,3 = I /ksT  and 
‘Hi = -(Ej+ J;jSj)Sf + D(S$ - QS:. The thermodynamic quantities m, = ((S;))c, 
m, = ((S;))r and qr = (((S:)2))r are obtained from equation (4) by substituting S;. S; and 
(S:)z for Oi, respectively: 

where 

oi[Sj, (S;)z; v] = I + Sj sinh(JijV) + (Sj)*[cosh(JjjV) - 11. 

The functions F ( x ) ,  G ( x )  and H ( x )  are defined by 
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and 

and V = a/ax  is the differential operator. However, if we try to treat the multispin 
correlation presented in equations (5x7) exactly, the performance is mathematically 
intractable. Therefore, we shall adopt an approximation. The simplest approximation, 
which is adopted frequently, is  the following: ( (S iSjSk .  .))r = ((Si)),((Sj))~((S~))~. . ., for 
i # j # k # . . ., with the assumption of the statistical independence of the different bonds. 
With such a procedure, the longitudinal magnetization m,, the transverse magnetization m, 
and quadrupolar moment 4r can be evaluated from the following coupled equations: 

where 
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and z is the lattice coordination number, 
Here, we are interested in studying the transition temperature only for the honeycomb 

lattice with z = 3. As discussed in the previous work [12], in the vicinity of the second- 
order phase transition line, by expanding the right-hand side of equations (13) and (15) with 
respect to m,, and retaining only linear terms in mz, the averaged magnetization can be 
given by 

The second-order transition line can be determined by 

a = l  (19) 

in equation (18). The right-hand side of (18) must be positive. If this is not the case, the 
transition is of the first order, and hence the point at which 

a = l  and b = O  (20) 

is the TCP. Here, the parameters a and b are given in the appendix 

3. Phase diagrams 

In this section, we shall examine the effect of a transverse field on the phase diagrams of 
the random-mixed-bond spin-I king model with a negative single-ion anisotropy parameter 
on the honeycomb lattice by solving equations (19) and (20) numerically. 

3.1. The case of a = 0 .S 
Figures l(a), l(b) and l(c) show the phase diagrams in the (T, p )  space for three cases 
corresponding to reduced transverse fields S2/J of 0.2, 0.8 and 1.2, respectively, for various 
values of D j J .  The full and broken curves denote the second- and first-order phase 
transitions, respectively; the full circles denote the TCPs. In figure l (a)  the TCP appears 
in the whole p region from p = 0.0 to 1.0 when S2 has a small value. In other words, 
the second-order transition does not exist in the low-temperature region. On increasing 
the transverse field the tricritical temperature is depressed when Q is not too large: the 
second-order transition could even appear at zero temperature but, when R is larger, then at 
a certain critical value a,, the TCP will disappear. This behaviour of the transverse field can 
be seen from a comparison between figures I@), I(b) and l(c). This means that the system 
with a small value of p easily becomes disordered with T, = 0, if the value of S2 is large. 
In particular, when the value of R equals 2.241, the system will be not at all ordered [ 121. 
Additionally, in figures 2(a)-2(c) the change in Tc versus D in the system with CY = 0.5 is 
plotted at values of S2 selected to be the same as in figures l(a)-l(c), and various values 
of p are used. 

In fact, the existence of the TCP is also affected by the negative single-ion anisotropy 
parameter D besides the transverse field S2 and the randomness of the bonds. This is the 
result of competition between these three effects. The change in the tricritical temperature 
T, as a function of p with CY = 0.5 for several values of the transverse field S2 is presented 
in figure 3. As figure 3 shows, on decreasing the random parameter p. the value of C 
decreases. However, T, displays’an interesting behaviour in figure 3. That is C instead 
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Figure 1. Phase diagrams in (T. p )  space for U = 0.5 on a honeycomb lattice. for Q l J  -values 
of (0)  0.2, (b)  0.8 and ( c )  1 . 2  -. second-order Wansition; ----, first-order transition; ., TP. 
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Figure 2. Phak diagrams in (T, D) space. 

increases slightly in the range 0.1 > p t 0.0 when the value of !2 is small. If Q / J  is 
larger than 0.94, the TCP cannot exist at all. 

The reentrant phenomenon is another interesting problem in phase transition physics. 
From figures 1 and 2, it can be observed in an appropriate range of parameters (such as 
the curve labelled 0.85 in figure l(u) or the curve labelled 0.2 in figure Z(a)). For the case 
Q = 0, Kaneyoshi [9] has discussed the reason for the re-entrant phenomenon in detail. 
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',- Figure 3. 
ksT,JJ wilh p for selected values of nJJ. 

The variations in Mcriticd temperature 
P 

To clarify the effect of a transverse field on the re-entrant phenomenon, the magnetic re- 
ennant phase diagrams in the T-D plane are given for the two cases p = 0.2 and p = 0.4 
in figures 4(a) and 4(b), respectively, for several values of Q / J .  From figure 4(a) we 
find that the range of the second-order re-entrant phase transition should decrease with 
increasing transverse field R and should disappear when R is larger than a certain value 
(for example, S2 > 0.55 in figure 4(b)). However, if a TCP exists in the phase diagrams, 
the effect of the transverse field on the second-order re-entrant phase transition becomes 
more complex. With increasing transverse field S2 but not larger than this ceitain value 
(in the case of figure 4(b), S2 is not larger than O S J ) ,  the TCP should be depressed. This 
depression may make the second-order re-entrant phase transition appear. These results are 
highly analogous to those in the quantum transverse king model with a random field by use 
of the MFA [ 151 and pair approximation [ 161. This may be attributed to competition between 
quantum effects due to the transverse field, the single-ion anisotropy, and the randomness of 
bonds. In fact, we can see from figures 1 and 2 that the transition in which the randomness 
of the bonds or the crystal field (or the single-ion anisotropy parameter) dominates has a 
tendency to be of first order. On the other hand. the transverse field tends to make it second 
order. We have also observed that the re-entrant phenomenon may occur if D is not large 
and if R is small. When D is large (for example, D / J  = 1.2) the phenomenon becomes 
impossible, since most spins are in the 5; = 0 state rigidly and act like non-magnetic atoms 
[9]. The three effects (the single-ion anisotropy, the transverse field and the randomness of 
the bonds) compete in the king spin system indeed, and this makes the role of Q become 
complex. 

3.2. The case of 01 = -0 .I 

Figures S(a)-(c) show the changes in Tc with p for Q / J  = 0.2, 0.5 and 0.8, respectively, 
and for various values of D. The figures clearly show that the tricritical temperature T 
should be depressed on increasing the transverse field S2, and the TCP disappears for S2 > 520: 
the second-order mentrant phenomenon occurs within the appropriate ranges. In figure 6, 
the behaviour of G is described as a function of p, for values of Q from 0.0 to 0.85. 
However, for 4 in the region k s T j J  c 0.03, in the case of S2 = 0.0, the calculation of 
numerical values of the TCP will become difficult because of the large numerical overflow 
as the computer works. 

For the system with o( = -0.1, the re-entrant phenomenon due to the frustration of Jj, 
should occur. To observe the effect of a transverse field on the re-entrant phase diagrams 
in (T, P) space, in figures 7(a)-(c) we selected the three D/J-values of 0.1, 1.0, and 1.1, 
respectively. From figure 7(a) we can see clearly that the re-entrant phenomenon is easily 
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Figure 4. Two examples which exhibit the wentrant phenomenon for the systems with z = 3 
and a = 0.5 for various values of Q l J :  (a )  p = 0.2; (b )  p = 0.4. 

1.0 0.8 0.6 0.t 0.2 
P P P 

Figure 5. Phase diagrams in (T. p )  space for a = -0.1 for Q l J  values of (a) 0.2 (b )  0.5 and 
( e )  0.8. The numb% on the curves are the values of D/J .  

Figure 6. The variations in tricritid tempemure 
b l i l J  with p for a = -0.1. for selected values of 
Q l J .  

destroyed by the application of s2 when D / J  is small (see the curves labelled 0.3 and 0.5). 
In figure 7(b), D is not small but D / J  = 1.0; the re-entrant phenomenon is not so easily 
destroyed by C2 as in figure 7(a). Then the role of the transverse field s2 is to destroy the 
re-entrant phenomenon. However, when D / J  z 1.0 (for example, D / J  = 1.1  (figure 7(c)), 
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in which the TCP exists, the second-order re-entrant phenomenon occurs with increased R. 
Here the role of S?. is not to destroy but to assist. We think that the mechanism of the effect 
of 52 on the re-entrant phenomenon in figure 7(c), in which TCPS are depressed, is different 
from that in figures 7(a) and 7(6). Thus the mechanism of the re-entrant transition is very 
complex. The origin of the re-entrant transition is not very clear, and maybe it  mainly arises 
from both frustration effects and non-uniform convergence of p E  at Tc = 0 axis. Therefore, 
further investigation into the mechanism of the reentrant transition is needed. 

P P 
5 

P 
Figure 7. T h e  examples which exhibit the re-entrant phenomenon for the system with z = 3 
and a = -0.1: ( a )  DIJ = 0.1; (b) DIJ = 1.0; ( c )  D I J  = 1 . 1 .  The numbers on the curves 
m the values of Q / J .  

3.3. The condition for the occurrence of the TCP 

Let us now look at the condition for the existence of KPS. We can first eliminate D from 
equation (20) in the limit T + 0 and then solve for the critical transverse field, which 
can be expressed as Qo(p,cr)  [17]. The TCP can exist when R < S?., and disappears when 
S?. > Qo. The function RO is calculated numerically for two values of a ,  and the results are 
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plotted in figure 8. As mentioned above, because of the large numerical overflow as the 
computer works, the determination of the behaviour of QQ will be difficult in the region in 
which R is very small and 01 = -0.1. +;:m U.0.5 

0. L 

n=-O.l 

0.2 

0 
1.0 0.8 0.6 0.L 0.2 0 Figure 8.  The crilical transverse held 0013 plotted 

P against j? for two cases: LL = 0.5 and -0. I. 

4. Conclusions 

In this work we have calculated phase diagrams for the random-mixed-bond spin-l k ing  
model with a singleion anisotropy in a transverse field for a honeycomb lattice under 
the EFT. The effects of a transverse field on the phase diagrams have shown a number of 
interesting phenomena. Moreover, the influence of the transverse field on two different types 
of re-entrant phenomenon, namely the usual re-entrant phenomenon from the frustration of 
the exchange interaction Jij and the other due to the competition between the randomness 
of bonds and the negative single-ion anisotropy, have been discussed. We have also shown 
the existence of the critical transverse field Ro above which the TCP can no longer occur. 

Appendix 

The parameter a is defined by 

U = 3&(90DI + 1 - 40)*F(x)lx=O 

where qo is the solution of 

qo = + 1 - 4 0 ) 3 ~ ( ~ ) ~ , = o .  

The parameter b is defined by 
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with 

e = 3(01  - IXqoDl + 1 - qo)’H(x)l,=a 

f = 3 D h o D 1  + 1 - qo)ff(x)lr=o. 

(W 

(A@ 

These coefficients can be easily calculated by applying the mathematical relation 
exp(vv)@(x) = @(J + U). 
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